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1 Homotopy Coherence

No, I have not discovered the
model structure for
quasi-categories in the 1980’s. I
became interested in
quasi-categories (without the
name) around 1980 after
attending a talk by Jon Beck on
the work of Boardman and Vogt. I
wondered if category theory could
be extended to quasi-categories.
In my mind, a crucial test was to
show that a quasi-category is a
Kan complex if its homotopy
category is a groupoid. All my
attempts at showing this have
failed for about 15 years, until I
stopped trying hard! I found a
proof after extending to
quasi-categories a few basic
notions of category theory. This
was around 1995. The model
structure for quasi-categories was
discovered soon after. I did not
publish it immediately because I
wanted to show that it could be
used for proving something new in
homotopy theory. I am a bit of a
perfectionist (and overly
ambitious?). I was hoping to
develop a synthesis between
category theory and homotopy
theory (hence the name
quasi-categories). I met Lurie at a
conference organised by Carlos
Simpson in Nice (in 2001?). I gave
a talk on the model structure and
Lurie asked for a copy of my notes
afterward. I intuitively understood
that he could develop the theory
of quasi-categories more and
better than I could. He was young
and a better mathematician than I
was. I do not regret it.

- André Joyal on the history of the
Joyal model structure, see Math

Overflow Answer
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1.1 Review
Last time we constructed an adjunction

Cat∆ Set∆
N

C⊣

where we called N the homotopy coherent nerve functor, while C was referred
to as the rigidification functor. The construction of the above adjoint pair was
done in two steps:

• First we constructed a functor S : ∆→ Set∆.

• We left Kan extended S along the Yoneda embedding Y∆ to obtain the
unique cocontinuous extension C of S:

∆ Cat∆

Set∆

S

Y∆
C

By the nerve realization Theorem, we know that C ⊣ N where

N : Cat∆ → Set∆, F 7→ HomCat∆(S[−],F )

Let us recall this construction: We start by building the functor S : ∆→ Cat∆
valued in the category of simplicially enriched categories. For any finite ordinal
[n] the functor S should spit out a simplicially enriched category S[n] which has

• its objects given by the set [n] = {0, . . . , n}.

• its morphism simplicial sets, for objects i, j ∈ [n], are given by

S[n](i, j) := N (Pi→j)

where N : Cat→ Set∆ is the nerve functor for (ordinary) categories, while
Pi→j is the category whose objects are given by subsets

{i, j} ⊂ T ⊂ [i, j]

In particular, Pi→j = ∅ if i > j. For a second such subset T ′ as above,
there is an arrow T → T ′ if and only if T ⊂ T ′.

• The composition morphisms

S[n](i, j)× S[n](j, k) S[n](i, k)

for i, j, k ∈ [n] are induced by taking unions.

4



• The identity arrow picked out by

∆0 → S[n](i, i)

is given by the singleton {i}.

This neatly assembles into a simplicially enriched category S[n]. Moreover, the
coface and codegeneracy maps induced by the functor (that we want to construct
here) S : ∆→ Cat∆

S[n− 1] S[n]

S[n+ 1] S[n]

di

si

do the "obvious" things: On objects these simplicially enriched functors act via
the functions of sets di : [n− 1]→ [n] and si : [n+ 1]→ [n]. For k, l ∈ [n] their
actions on the morphism simplicial sets

S[n− 1](k, l) S[n](di(k), di(l))

S[n+ 1](k, l) S[n](si(k), si(l))

di

si

is induced by applying the maps di and si to subsets {k, l} ⊂ T ⊂ [k, l] ⊂ [n− 1]
and {k, l} ⊂ U ⊂ [k, l] ⊂ [n+ 1] to obtain

{di(k), di(l)} ⊂ di(T ) ⊂ [di(k), di(l)] ⊂ [n]

{si(k), si(l)} ⊂ si(U) ⊂ [si(k), si(l)] ⊂ [n]

Thus it is that we have constructed a functor S : ∆ → Cat∆. The category
P0→4 may be depicted as follows:

{0, 4} {0, 1, 4}

{0, 3, 4} {0, 1, 3, 4}

{0, 2, 4} {0, 1, 2, 4}

{0, 2, 3, 4} {0, 1, 2, 3, 4}

So we see thatN (P0→4) is isomorphic to ∆1×∆1×∆1 (the simplicial cube). More
generally, N (Pi→j) ∼= (∆1)×(j−i−1). This plus the ominous nerve realization
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paradigm (see Nerve Realization) we immediately obtain: We left Kan extend
S : ∆→ Cat∆ along the Yoneda embedding:

∆ Cat∆

Set∆

S

Y∆
C

Recall here that C := LanY∆
(S) thus defined is the unique cocontinuous extension

of S i.e. we have C|∆ ∼= S or equivalently

C(∆n) ∼= S[n]

functorially in [n] ∈ ∆. In particular, for an arbitrary simplicial set X, we know
by the density theorem (see Density) that there is a category IX along with a
functor ξ : IX → ∆ such that

X ∼= colim
i∈IX

∆ξ(i)

The image of X under C is then given by

C(X) ∼= colim
i∈IX

S(ξ(i))

The nerve realization paradigm then says this construction is left adjoint to the
homotopy coherent nerve functor

N : Cat∆ → Set∆, F 7→ HomCat∆(S[−],F )

A homotopy coherent diagram of shape I ∈ Set∆ in some simplicially enriched
category F is a map of simplicial sets

I → N(F )

Equivalently, by exploiting the adjunction (C ⊣ N) we could also define the same
homotopy coherent diagram via a simplicially enriched functor

C(I )→ F

Let N be the category of natural numbers and view it as a simplicial set
∆op → Set by taking its (ordinary) nerve (the nerve of N will again be denoted
by N). A map of simplicial sets

N→ N(Spaces)

is then, by the above definition, a homotopy coherent diagram of shape N in
Spaces. Now does this agree with the very very informal definition of a homotopy
coherent diagram of shape N that we give in the motivational part of the last
lecture? Yes, it does.
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Proof. A morphism

N→ NSpaces

is an assignment

• of 0-simplices

N0 ∋ i 7→ Xi ∈ NSpaces0 = HomCat∆(C(∆
0), Spaces)

which simply boils down to Xi being a space i.e. an object in Spaces. This
can be mysteriously depicted by:

{0}
X0

where 0 denotes i to make it less confusing later on.

• of 1-simplices

N1 ∋ (i→ j) fi,j ∈ NSpaces1 = HomCat∆(C∆
1, Spaces)

This means the arrow (i → j) is mapped to the simplicially enriched
functor fi,j : C(∆1)→ Spaces. But such a diagram is determinded already
by the datum on morphism simplicial sets

C∆1(0, 1) ∼= ∆0 Spaces(Xi, Xj)
fi,j

In other words, fi,j is a map of spaces Xi → Xj . This can also be depicted
(mysteriously so, but it will make sense soon enough) by:

{0, 1}
f0,1

where i = 0, j = 1.

• of 2-simplices

N2 ∋ (i→ j, j → k) hi,j,k ∈ NSpaces2 = HomCat∆(C∆
2, Spaces)

The action of morphism simplicial sets of this simplicially enriched functor
hi,j,k is given by

C∆2(0, 2) ∼= ∆1 Spaces(Xi, Xk)

C∆2(0, 1) ∼= ∆0 Spaces(Xi, Xj)

C∆2(1, 2) ∼= ∆0 Spaces(Xj , Xk)

hi,j,k

fi,j

fj,k
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By using commutativity of

C∆(0, 1)× C∆2(1, 2) Spaces(Xi, Xj)× Spaces(Xj , Xk)

C∆2(0, 2) Spaces(Xi, Xk)

∪

we obtain that hi,j,k : ∆1 → Spaces(Xi, Xk) is equivalently a homotopy

Xj

Xi Xk

fj,kfi,j

fi,k

hi,j,k

Mysteriously (or not so much anymore) again:

{0, 2}
f0,2

{0, 1, 2}
f1,2f0,1

h0,1,2

• of 3-simplices

N3 ∋ (i→ j, j → k, k → l) Hi,j,k,l ∈ NSpaces3 = HomCat∆(C∆
3, Spaces)

And in an analogous manner as before, the 3-simplexHi,j,k,l will correspond
to a 2-homotopy (homotopy between homotopies) as depicted (where
i = 0, j = 1, k = 2, l = 3):

{0, 3}
f0,3

{0, 1, 3}
f1,3f0,1

H0,1,2,3

{0, 2, 3}
f2,3f0,2

{0, 1, 2, 3}
f2,3f1,2f0,1

h0,1,3

h0,2,3 h1,2,3f0,1

f2,3h0,1,2

• of 4-simplices ... Here we can draw the following picture, which should
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make perfect sense at this point:

{0, 1, 4}
f1,4f0,1

{0, 1, 2, 4}
f2,4f1,2f0,1

{0, 4}
f0,4

{0, 2, 4}
f2,4f0,2

{0, 1, 3, 4}
f3,4f1,3f0,1

{0, 1, 2, 3, 4}
f3,4f2,3f1,2f0,1

{0, 3, 4}
f3,4f0,3

{0, 2, 3, 4}
f3,4f2,3f0,2

h1,2,4f0,1

h2,3,4f1,2f0,1

h0,1,4

h0,2,4

f2,4h0,1,2

f3,4h1,2,3f0,1

f3,4h1,3,4

f3,4h0,2,3

f3,4f2,3h0,1,2

where every face is filled by the respective Hi,j,k,l. Moreover, this cube has
a volume or filling given by some F0,1,2,3,4 : C∆

4 → Spaces.

• and so on...

1.2 Dwyer-Kan-Bergner and Joyal model structures
Note that a simplicially enriched category F has an induced homotopy category
HoF which has the same objects as F , yet its set of morphisms from X to Y is
given by the path components

π0F (X,Y )

where π0 : Set∆ → Set is the functor given by

X• coeq
(
X1 X0

)
In particular, composition an units on HoF are induced by F by simply applying
π0 to the corresponding datum. In particular, for a simplicially enriched functor
F : F → F ′ the above construction induces a functor of ordinary categories
π0F : HoF → HoF ′. Let F and F ′ be simplicially enriched categories. A
functor F : F → F ′ is called a Dwyer-Kan equivalence if it satisfies the following
two conditions:

• it is (homotopically) essentially surjective i.e. π0F : HoF → HoF ′ is
essentially surjective.

9



• it is ∞-full and faithful i.e. for any pair of objects X,Y ∈ F the action of
F on Hom-simplicial sets

F (X,Y ) F ′(FX,FY )∼

is a weak homotopy equivalence of simplicial sets.

There exists a model structure for Cat∆, called Dwyer-Kan-Bergner model
structure, which we will denote by (Cat∆)DKB:

• weak equivalences in this model category arer given by Dwyer Kan equiva-
lences.

• for fibrations and cofibrations check out the Nlab DKB model structure.

Fibrant objects in (Cat∆)DKB are precisely Kan complex enriched categories, i.e.
categories enriched over ∞-groupoids. There exists a model structure on Set∆
called Joyal model structure, which we will denote by (Set∆)Joyal:

• cofibrations are monomorphisms.

• weak equivalences are those maps of simplicial sets X → Y which are
mapped to Dwyer Kan equivalences by the rigidification functor C : Set∆ →
Cat∆.

Fibrant objects in (Set)Joyal are precisely quasicategories. The important
result of this section is that both (Cat∆)DKB and (Set∆)Joyal are models for
∞-categories, which is witnessed by: There is a Quillen equivalence

(Cat∆)DKB (Set∆)Joyal
N

C
≃Quillen

This means that, up to equivalence, any Kan complex enriched category is
the rigidification of a quasi-category and any quasi-category is the homotopy
coherent nerve of a Kan complex enriched category. Let us utilize the above
equivalence:

• ∞Grpd := N(Kan) is defined to be the ∞-category of ∞-groupoids.

• Consider the Kan complex enriched category QCatcore which has objects
quasicategories and the corresponding morphism simplicial sets are given
by

core(Fun(X,Y )) ∈ Kan

for X,Y quasicategories. Here core is a right adjoint functor fitting into
the adjunction:

Set∆ Kan
core

forget

⊣

10

https://ncatlab.org/nlab/show/model+structure+on+sSet-categories


More concretely, given a simplicial set X, the core of X, denoted as core(X),
is defined as the largest sub-simplicial set Y ⊆ X such that Y is a Kan
complex. Having this, we define

∞Cat := N(QCatcore)

Strictly speaking ∞Cat should really be an (∞, 2)-category instead of just
an (∞, 1)-category as defined above; we do not have the tools however to
talk about this, so we will avoid this conversation altogether.

• Let R be a ring and Ch(R) be the category of chain complexes over R.
This category is Kan complex enriched as we will see in a moment. First a
little bit of preparation is needed: There is a functor

Csimp
• : ∆→ Ch(Ab), [n] 7→ Csimp

• (∆n)

where Csimp
• (∆n) is the chain complex of abelian groups which in degree

m is given by

Z
[
{non-degenerate m-simplices of ∆n}

]
Here Z[−] is the free abelian group functor:

Ab Set
forget

Z[−]

⊣

and the differentials are given by

∂m :=

m∑
i=0

(−1)idi

with di : ∆n
m → ∆n

m−1 the induced face maps. With this we can verify that
Ch(R) is Kan complex enriched by means of the construction:

Ch(R)simp(C•, D•) := HomCh(R)(C• ⊗Z C
simp
• (∆n), D•)

It can be shown that Ch(R)simp really has values in Kan complexes (this
follows from it having values in simplicial groups, and it can be shown
that any simplicial group is a Kan complex). Thus Ch(R) is Kan complex
enriched and thus we define the ∞-category of chain complexes:

K(R) := N(Ch(R))

There is∞-categorical version of localization; it will turn out that localizing
at quasi-isomorphisms yields

D(R) := K(R)
[
{quasi-iso}−1]

the derived ∞-category of the ring R.

• More general examples include e.g. dg-categories (see dg-categories).

For the remainder of this section: see the handwritten notes.
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2 ∞-categorical abstract Nonsense

I can illustrate the ... approach
with the ... image of a nut to be
opened. The first analogy that
came to my mind is of immersing
the nut in some softening liquid,
and why not simply water? From
time to time you rub so the liquid
penetrates better, and otherwise,
you let time pass. The shell
becomes more flexible through
weeks and months — when the
time is ripe, hand pressure is
enough, the shell opens like a
perfectly ripened avocado! A
different image came to me a few
weeks ago. The unknown thing to
be known appeared to me as some
stretch of earth or hard marble,
resisting penetration ... the sea
advances insensibly in silence,
nothing seems to happen, nothing
moves, the water is so far off you
hardly hear it ... yet finally it
surrounds the resistant substance.

Grothendieck

2.1 Universal Definitions and Examples
In the last few sessions we have devoted quite a lot of effort to defining ∞-
categorical hom spaces, or more generally even the ∞-categorical hom-functor
associated to an ∞-category C . We were able to give such a construction due to
the homotopy coherent nerve functor which fits into a Quillen equivalence with
the rigidification functor:

(Set∆)Joyal (Cat∆)DKB

C

N

⊣
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Hence it was that we defined the Yoneda embedding YC : C → P(C ) by currying
the (C ⊣ N)-adjunct of the composite

C(C op × C ) C(C )op × C(C )

Kan sSet

DK equivalence

C(C )(−,−)

ψ∞◦|−|

Having established such a functor and the fact that there is a Yoneda Lemma
also for ∞-categories immediately tells us that there ought to be (homotopy
coherent) universal constructions just waiting to be defined. Before going there,
let us quickly talk about (set-theoretical) size issues: Let κ be an infinite
cardinal.

1. A simplicial set X• is called κ-small, if the collection of non-degenerate
simplices of X is κ-small.

2. An ∞-category is called essentially κ-small, if it is (Joyal) equivalent to a
κ-small simplicial set.

3. An ∞-category C is called locally κ-small if, for every pair of objects
c, c̃ ∈ C , the ∞-groupoid of morphisms C (c, c̃) is essentially κ-small.

One can show that an ∞-category C is essentially κ-small if and only if it
is locally κ-small and the set of isomorphism classes π0(C≃) is κ-small. One
is therefore reduced to the problem of testing essential κ-smallness of Kan
complexes. However, it is shown that a Kan complex X is essentially κ-small if
and only if the set π0(X) is κ-small and the homotopy groups {πn(X,x)}n>0

are κ-small for every vertex x ∈ X. For more on this see Kerodon. Having all
that, let us move on to defining adjunctions of ∞-categories. Let R : D → C
be a functor between ∞-categories.

1. Given objects c ∈ C , d ∈ D , and a morphism η : c → Rd in C , we say η
witnesses d as a left adjoint object to c under R if the composite

D(d,−) C (Rd,R(−)) C (c,R(−))R η⋆

is an equivalence of functors D → ∞Grpd. Morally d ≃ Lc, for L a
pointwise left adjoint.

2. An adjunction between R and a functor L : C → D is an equivalence

D(L(−),−) ≃ C (−, R(−))

An amazing consequence of the Yoneda Lemma is that in order to define left
adjoint functors, it suffices to define them merely on objects (something that is
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of course really, really false for arbitrary functors). A functor R : D → C admits
a left adjoint if and only if every c ∈ C admits a left adjoint object under R.
More generally, if CR ↪→ C is the full subcategory spanned by those objects
c ∈ C which admit a left adjoint object, extracting these left-adjoint objects
defines a functor

L : CL → D

Proof. By currying the functor

C (−, R(−)) : C op ×D →∞Grpd

we obtain a functor R̃ : C op → Fun(D ,∞Grpd), which, when restricted to
CR, lands in the representables, i.e., in the essential image of the Yoneda
embedding YD : Dop → Fun(D ,∞Grpd). But YD is fully faithful, hence an
equivalence onto its essential image. Composing R̃|C op

R
with an inverse of this

equivalence yields a functor C op
R → Dop and hence a functor L : CR → D after

taking (−)op. But then by construction, YD ◦ Lop is equivalent to R̃|C op
R

in
Fun(C op

R ,Fun(D ,∞Grpd)). But this means D(L(−),−) and C (−, R(−)) are
equivalent in Fun(C op

R ×D ,∞Grpd).

We start off with some rather abstract, non-concrete examples before moving
on to concrete computations: Let us start off with probably the most general kind
of adjunction: the mysterious case of Kan extensions. For ψ : E → C a functor
between ∞-categories, we recall that, for all ∞-categories A , precomposition
with ψ induces a functor

ψ⋆ : Fun(C ,A )→ Fun(E ,A )

If this functor has a left resp. right adjoint functor Lanψ resp. Ranψ, then these
are called left Kan extension along ψ resp. right Kan extension along ψ. In the
algebraic geometry community these are also typically denoted by ψ! := Lanψ
and ψ⋆ := Ranψ. Sticking to that notation, the whole triple adjunction reads:

Fun(C ,A ) Fun(E ,A )ψ⋆

ψ!

ψ⋆

Let I ,C be ∞-categories and consider the unique morphism ! : I → ∆0 (note
that ∆0 is the terminal∞-category). Precomposition with ! induces the constant
diagram functor

const : C → Fun(I ,C )

The limit and colimit functors, if they exist, are then defined to be right resp.
left adjoints to const:

C Fun(I ,C )const

colim
I

lim
I
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In fact, as we already know from ordinary category theory, this is just a special
case of the above example by putting ψ to be the unique morphism I → ∆0.
Let f : I → ∞Grpd be a functor. Let us try to compute its limit by using
some formal abstract nonsense. If we assumed for a moment that such a limit in
∞Grpd existed, then we could calculate

lim
I
f ≃ ∞Grpd(∆0, lim

I
f)

≃ Fun(I ,∞Grpd)(const(∆0), f)

Putting lim
I
f := Fun(I ,∞Grpd)(const(∆0), f) yields a pointwise right adjoint

object in the sense of 2.1. There is two ways (I am aware of) one could go
about proving this: either we use that ∞Grpd is the free ∞-cocompletion of
the point ∆0, or we decompose mapping spaces by means of ∞-ends - we will
not spell out either of these, so you have to take my word on this. Hence lim

I

extends to a functor Fun(I ,C ) → C by Corollary 2.1. Let us illustrate the
previous example in the space case where I = Λ2

2 (the pullback shape). A
functor f : Λ2

2 →∞Grpd is the same as a diagram of 1-morphisms in ∞Grpd of
the form:

b

a c

fb

fa

The objects of a ×c b := lim
Λ2

2

f are maps ∆1 × Λ2
2 → ∞Grpd which, under

restriction, will be const(∆0) resp. f . A general map of shape ∆1 × Λ2
2 has its

image looking like

B B̃

A Ã

C C̃

and adjusting this to our case, an object const(∆0)→ f in a×c b is the same as
a diagram

∆0 b

∆0 a

∆0 c

ptb

fb

pta

fa

ptc
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But the above diagram just says that we have paths connecting the points
fb(ptb) ≃ ptc ≃ fa(pta). Hence, in particular we have

(a×c b)0 = {(∆0 pta→ a, ∆0 ptb→ b, ∆1 γ→ c) : [s(γ) = fa(pta)] ∧ [t(γ) = fb(ptb)]}

Moreover, even though we have specified the pullback functor

lim
Λ2

2

: Fun(Λ2
2,∞Grpd)→∞Grpd

merely on objects, we know by Corollary 2.1 that this really extends to a functor.
It is a good exercise to try to compute the equaliser for two morphisms of
∞-groupoids. A more general example of an adjunction is the following:
Consider the fully faithful embedding

∞Grpd ↪→∞Cat

induced by the canonical embedding of simplicially enriched categories Kan ↪→
QCat≃ after applying the homotopy coherent nerve N. This functor has both a
left adjoint |−| : ∞Cat→∞Grpd, which sends an∞-category to its localization
at all the morphisms, and a right adjoint core : ∞Cat→∞Grpd which throws
away all non-invertible 1-morphisms. In total,

∞Grpd ∞Cat

|−|

core

⊣
⊣

If we use relative categories as a model for ∞-categories, then the adjunction
above is induced by the homotopical adjunction

(Kan)Quillen (QCat)Joyal⊣
⊣

Taking the left and right derived functors of the left resp. right adjoint leads to
the correct functors (uniquely determined up to equivalence). We spell out this
relationship more carefully in the next section. Consider the ordinary category
Ch•(Rmod) for some ring R. The derived ∞-category of the ring R is defined
to be the pushout

W{quasi-isos} Ch•(Rmod)

po

|W{quasi-isos}| D(R)
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2.2 Homotopy Kan extensions
[label=Author]Lurie You might be tempted to think this is theory for theory’s
sake. It’s not. It’s theory for the sake of other theory...

2.2.1 A reminder

We recall the basic idea of a derived functor in a homotopical category (C ,WC ).
Later on we will relate this notion with the notion of an adjunction between
∞-categories. Let f : (C ,WC ) → (D ,WD) be a functor between homotopical
categories. A homotopical functor Lf : (C ,WC )→ (D ,WD) along with a com-
parison natural transformation l : Lf → f is called a left derived functor if it
induces a right Kan extensions as follows:

C D D [W −1
D ] C D [W −1

D ]

=

C [W −1
C ] C [W −1

C ]

f

γ

δ

δl

δf

γ
loc(δ◦Lf) Ranγ(δf)

where loc(δ ◦ Lf) is the unique functor coming from the universal property of
the localization:

C D

C [W −1
C ] D [W −1

D ]

Lf

γ δ

loc(δ◦Lf)

One can dualize this of course to arrive at the notion of right derived functors.
In particular, Lf := Ranγ(δf) is called the total left derived functor of f . In
the previous sessions we then had existence results for such left/right derived
functors. Namely, a sufficient condition for the to-be derived functor should
be left/right deformability. In the presence of a model structure, a particularly
good pair of candidates to derive is a Quillen adjunction. Let us try to derive
the procedure of taking Kan extensions along some functor ψ : I → J . Let
M be a model category. Then the functor category M I has a homotopical
structure where a natural transformation is a weak equivalence if and only if
each of its components is a weak equivalence. In fact, in good cases the functor
category might even give rise to two dual model structures:

• The projective model structure, where fibrations in M I
proj are natural

transformations which are componentwise fibrations.

• The injective model structure, where cofibrations in M I
inj are natural

transformations which are componentwise cofibrations.
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Recall that Lanψ ⊣ ψ⋆ ⊣ Ranψ, and furthermore note that ψ⋆ is both a left
resp. right Quillen functor as follows (it clearly preserves componentwise (trivial)
cofibrations resp. (trivial) fibrations:

M
J
inj M I

inj

M
J
proj M I

proj

ψ⋆

Ranψ

ψ⋆

Lanψ

Quillen⊣

Quillen⊣

Hence these pairs are derivable, leading to homotopy Kan extension functors
along ψ:

hoRanψ : M I →M J , hoLanψ : M I →M J

In particular, in the case of limits this yields homotopy (co)limit functors:

holim
I

: M I →M , hocolim
I

: M I →M

2.2.2 Warm-up Intuition

A homtopy pullback should really model the same thing as the ∞-pullback from
example 2.1. That is, for a category M with a notion of homotopy (e.g. model
categories) the homotopy pullback of a diagram a→ c← b in M assembles into
a diagram

a×hc b b

a c

in M which commutes only up to homotopy. Moreover, the homotopy pullback
is homotopically terminal in the following manner:

P

a×hc b b

a c

∃

In other words, we have an equivalence

Map(P, a×hc b) ≃ HoSq(P, a→ c← b)
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between maps from P into the homotopy pullback with the space of homtopy
commutative squares with vertex P . The above is sort of formalized by the
derived adjunction:

Ho(MΛ2
2) HoM

R lim
Λ2
2

Lconst

⊣

or more generally the adjunction

Ho(M I ) HoM
R lim

I

Lconst

⊣

2.2.3 When is an ordinary pullback a homotopy pullback?

We recall that in order to calculate e.g. the right derived functor of lim
I

all we
have to do is to precompose with a right deformation

R : M I →M I

on whose image lim
I

is homotopical. In the case where we apply the right derived
functor to an already fibrant object, the image will be equivalent to the image
of that object under the non-derived functor (this follows from Ken Brown’s
Lemma). So there are instances where e.g. the ordinary limit coincides with the
homotopy limit. Let us try to figure out, in the specific situation of pullbacks,
when a homotopy pullback may be written as a strict pullback. We have the
following result: If a f→ c

g← b is such that all objects are fibrant, then the
ordinary pullback equals the homotopy pullback if one of the two morphisms
is a fibration. Using this Lemma we can prove the following: If a f→ c

g← b
is such that all objects are fibrant, then the homotopy pullback is given by the
ordinary pullback

a×hc b Path(c)

pb

a× b c× c
f×g

where Path(c)→ c× c is a fibrant resolution of the diagonal map c→ c× c.

Proof. First of all we note that any pullback (on the left) may be rewritten as
depicted (on the right):

• x • c

y z x× y c× c
g ∆

f f×g
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where ∆: c→ c× c is the diagonal map obtained from the universal property of
the product c× c. Hence in order to compute the homotopy pullback, we really
only have to fibrantly replace one of the two maps (by the above Lemma). We
choose to replace the diagonal map and factorize it (by axioms of our model
category structure) as

c Path(c)

c× c

∼

∆
(p1,p0)

where Path(c) is referred to as a path space object (and is usually obtained by
taking the internal hom with an interval object). All in all, this leads to homotopy
equivalent diagrams and since the homotopy limit preserves equivalences of that
sort, we can simply calculate the homotopy limit of the diagram

Path(c)

a× b c× c

(p1,p0)

f×b

But since all the objects are fibrant and one of the two morphisms is a fibration,
the Lemma implies this computes the homotopy limit.

Let us calculate something in the Quillen model structure of simplicial sets.
Fix a diagram

c

a× b c× c
∆

f×g

consisting of Kan complexes. Let us calculate a fibrant resolution of the diagonal.
We have an obvious factorization:

c Fun(∆1, c)

c× c

∼

∆

r

(d⋆1 ,d
⋆
0)

where the first map is Fun(∆0, c)
s⋆0→ Fun(∆1, c) is a trivial cofibration, while

(d⋆1, d
⋆
0) is shown to be a fibration. By the above proposition, we therefore have

a×hc b Fun(∆1, c)

pb

a× b c× c

(d⋆1 ,d
⋆
0)

f×g
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This precisely recovers Example 2.1. We can do the same thing for
pushouts, but here we use the other kind of factorization of the codiagonal map
∇ : c

∐
c→ c:

c
∐
c Cyl(c)

c

∇ ∼

Then in order to compute the homotopy pushout of

c
∐
c a

∐
b

c

f
∐
g

∇

we replace the codiagonal as in the factorization by c
∐
c→ Cyl(c) (here Cyl(c) is

referred to as the cylinder object) and then take the ordinary pushout. Specifically
for simplicial sets (Quillen model structure) this will be a pushout like:

c
∐
c a

∐
b

po

c×∆1 a
∐h
c b

f
∐
g

(i0,i1)

where the cylinder object Cyl(c) = c×∆1.

2.2.4 Homotopy Kan extensions in Kan complex enriched categories

Since we know how to compute homotopy Kan extensions in spaces or Kan
complexes, it is not too far fetched to believe there is a way to also extend this
definition to general Kan complex enriched categories.

Recall that for f : C → D a functor between ordinary categories, its ordinary
limit lim

C
f is characterized by the fact that for every object d ∈ D we have

D(d, lim
C
f) ≃ lim

C
D(d, fc)

The analogous statement here is that all homotopy (co)limits are determined
by homotopy limits in (Set∆)Quillen. In particular, since (Set∆)Quillen models ∞-
groupoids, this means that general∞-limits are determined by∞-limits in spaces
or ∞-groupoids. Recall that, intrinsically, Kan extensions, as every universal
construction, are supposed to be only defined up to weak equivalence, it is useful
to make the extra freedom of choosing any weakly equivalent object explicit
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by the following definition: For φ ∈ M I
inj and φ′ ∈ M

J
inj and a morphism

ϑ : φ′ → Ranψ(φ), we say that ϑ exhibits φ′ as a homotopy right Kan extension
of φ if for some injectively fibrant resolution φ ∼→ R(φ) the composite morphism

φ′ Ranψ(φ)

Ranψ(R(φ))

ϑ

∼

This is certainly dualizable, that is, we can dualize the definition so as to get
something analogous for homotopy left Kan extensions (in this case we consider
the projective model category structure). We can then make the following
definition for Kan complex enriched categories. For F a Kan complex enriched
category and ψ : C → C ′ an enriched functor of small simplicially enriched
categories, given φ ∈ FC and φ′ ∈ FC ′

, we say a morphism ϑ : φ′ → Ranψ(φ)
exhibits φ′ as a homotopy right Kan extension if for all x ∈ F the morphism

ϑ⋆ : F (x, φ′(−))→ F (x,Ranψ(φ)(−))

exhibits F (x, φ′(−)) : C ′ → (sSet)Quillen as a homotopy right Kan extension of
F (x, φ(−)) : C → (Set∆)Quillen along ψ:

F (x, φ′(−)) F (x,Ranψ(φ)(−))

hoRanψ
(
F (x, φ(−))

)
Ranψ

(
F (x, φ(−))

)

ϑ⋆

∼ induced by UP of target

fibrant resolution

For F a Kan complex enriched category and ψ : C → C ′ an enriched functor
of small simplicially enriched categories, given φ ∈ FC and φ′ ∈ FC ′

, then a
morphism ϑ : φ′ → Ranψ(φ) exhibits φ′ as a homotopy right Kan extension if
and only if the homotopy coherent nerve takes φ′ to the ∞-right Kan extension
RanNψ(Nφ). The ∞-categories of ∞-groupoids and ∞-categories are both
complete and cocomplete.
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